Development and Current Status of the Korea Thermophysical Properties Databank (KDB)¹

J. W. Kang, ² K.-P. Yoo, ³ H. Y. Kim, ⁴ H. Lee, ⁵ D. R. Yang, ² and C. S. Lee^{2, 6}

Physical property data, phase equilibrium data, and predictive models are essential parts of process design and operation. With the support of the Ministry of Commerce, Industry and Energy (MOCIE) of Korea, four universities collaborated to develop a thermophysical property databank and to obtain experimental data. In this paper topics related to the development and use of the thermophysical properties and phase equilibrium database are discussed. The databank contains about 4000 pure components and 5000 phase equilibrium data sets. Most of the data were collected along with the experimental uncertainties. Various estimation methods and thermodynamic models were included to calculate properties and phase equilibria. Data can be searched for with a stand-alone program or using an Internet web site. The current status and future prospects of the KDB (Korean Thermophysical Properties Databank) are discussed.

KEY WORDS: database; data bank; data collection; thermophysical properties; vapor–liquid equilibria.

1. INTRODUCTION

Physical properties and phase equilibrium data are the basic information needed for process design and operations. Thermophysical and phase

487

¹ Paper presented at the Fourteenth Symposium on Thermophysical Properties, June 25–30, 2000, Boulder, Colorado, U.S.A.

² Department of Chemical Engineering, Korea University, 136-701 Seoul, Korea.

³ Department of Chemical Engineering, Sogang University, C.P.O. Box 1142, 121-742 Seoul, Korea.

⁴ Department of Chemical Engineering, Seoul National University, 151-742 Seoul, Korea.

⁵ Department of Chemical Engineering, Advanced Institute for Science and Technology, Taejon 305-701, Korea.

⁶ To whom correspondence should be addressed. E-mail: cslee@mail.korea.ac.kr

equilibrium property data for pure components and mixtures are needed for material and energy balances and for equipment design. A key factor in evaluating process simulation and design programs is the reliability of predicted thermophysical properties and phase equilibria. Such data are usually supplied in various forms. The DDB (Dortmund Data Bank) [1] and DIPPR (Design Institute for Physical Properties) [2] are well-known mixture and pure component physical property databases. It has been recognized that the absence of reliable data and correlations results in a lack of confidence in design calculations [3]. Several authors [3, 4] have reviewed the effect of property estimation errors. In the past, the need for accurate data for comprehensive materials was not a serious problem. With recent advances in process engineering, the need for thermophysical properties and calculation models is growing in Korea. Moreover, with the growing demand for new materials, and environmental and safety considerations, the industry demand for new data and models becomes even greater. With the support of the MOCIE (Ministry of Commerce, Industry and Energy) in Korea, four universities (Korea University, Sogang University, Seoul National University, and KAIST) collaborated to develop a database and experimental measurement capabilities. The main purpose of the KDB (Korea Thermophysical Properties Databank) project is to develop, organize, and maintain useful data compilations and calculation programs.

2. DATA COMPILATION

The database is composed of pure component and mixture property databases and their management system. Components are classified as hydrocarbons, polymers, and electrolytes.

2.1. Pure Component Properties

Entries to the pure component property databank are some 2000 hydrocarbons, 200 polymers, and 2000 electrolytes. Fixed properties collected for each component are as follows.

- (a) Hydrocarbons
 - **Basic** properties

Molecular weight, critical data, boiling point, freezing point, triple point, acentric factor, solubility parameters, heat of combustion, heat of fusion, partial molar volume, Gibbs free energy, and enthalpy of formation at standard state Molecular properties

Dipole moment, radius of gyration, Van der Waals volume/ area

Point properties

Liquid density, heat of vaporization, surface tension, dielectric constant, refractive index

Hazardous and environmental properties

Flash point, flammability limit, auto ignition temperature, NFPA rating

(b) Polymers

Glass transition temperature, melting point, solubility parameters, dielectric constants, refractive index, surface tension

(c) Electrolytes

Molecular weights, ionic valence, solid density, Gibbs free energy, enthalpy of formation

They are given with values in original units, with references, and with uncertainty information when possible. Raw experimental data for temperature-dependent properties such as vapor pressure, heat capacity, viscosity, thermal conductivity, and surface tension are also given with their regression coefficients.

2.2. Mixture Properties

About 5000 sets of phase equilibrium data and mixture properties are provided for hydrocarbon VLE, polymer solubility, and electrolyte solubility. They are provided with references, uncertainty information, and experimental methods. Figure 1 shows a typical binary VLE input program interface.

- Vapor-Liquid equilibrium data (4602 sets)
- Polymer finite solubility (431 sets)
- Polymer infinite solubility (222 sets)
- Aqueous electrolyte solution solubility (501 sets)

2.3. Miscellaneous Data

Atomic weights, dimension conversion table, physical constants, property definition table, and other miscellaneous data tables are also given.

LE Data Input						
VLE ID	27	1000				
Component 1	1943		CARBON DIGKODE		Choo	10
Component 2	2		ETHANE	Choo	75	
VLE Type	leath	amal P-T X/Y (P-TXY Data			
Reference	37			Edit	et	
Esperimental Method	STAT	IC METHOD	-		_	_
Temperate Unit	deg		Prezzuet	Unit pei	1	-
T.(dep.C)	Phi	0	30 (ool Fran.)	Y1 maiField J	T ERR	FEL
and the second se						
1997	0	500	.0372		+ 0.05	
	0	500 600 800	.0502 .0601 .116	.396	+ 0.05	
	0	500 600 800 1000	.06072 .0601 .116 .179	.306 .433	+ 0.05 + 0.05 + 0.05	
	0	500 600 800 1000	.6372 .0601 .116 .179	.396 .433	+ 0.05 + 0.05 + 0.05	
	0	500 600 800 1000	.05072 .0601 .116 .178	.386 .433	+ 0.05 + 0.05 + 0.05	
T Accuascy P/	0 0 0	500 600 1000	0601 .116 .179 VI Accuaecy	. 386 . 433	+ 0.05 + 0.05 + 0.05 + 0.05	Marki
T Accuses Pr	a o o o	500 600 1000 1000 <u>X1 Accue</u> Save (F2)	05072 0601 116 .178 V1 Accuracy Save at	. 396 . 433	+ 0.05 + 0.05 + 0.05 + 0.05	Initial Initial

Fig. 1. Binary VLE experimental data input program of the KDB.

2.4. Databank Management Program

The Databank management program is composed of four parts—data input programs, data verification/regression programs, data transfer programs, and data search/view programs. Working data are stored in local computers and verified data are stored in the DBMS server using Microsoft SQL Server software. Figures 2 and 3 show typical data input programs for hydrocarbon pure component data.

3. CALCULATION MODULES

Calculation modules include FORTRAN 77 source codes for physical property and phase equilibrium calculations. Simple process design programs are also included for testing the thermophysical property calculation modules. The programs available for property calculations are as follows.

- (a) Hydrocarbons
 - Vapor pressure calculation, heat of vaporization calculation, gas/liquid density calculation, gas/liquid viscosity calculation,

Editing Component Data				
[GeneralInformation]				
Component ID				
Component Name N-00	TANE	10.000	1000	
Sprorent 1			1.1.1	
Synonym 2		2.42.37		
Synonym 3		123.51	2.2.1.1	
Abbreviated Name				
DAName				100
CA Registy No.				
Formula [Short Form] CBH1	8 [1	ong Form)		
Elassification Paral	fnic Hydrocarbons - n Alka	net		1
Nolecular Weight 11142	367 No	of Cabore B		III SALAR
5 5 5	CH	Real Property lies	Editoria	Gioupi
4° A	es Hy		Savall	र्थ
		1000	Save and E	ek (F3)
		1	I manual of	100

Fig. 2. Typical data input program of the KDB.

	and the second second		
Edit (F3) Dr	cireCet		Entificity
E Delaul Volue Default Unit	Halwarice	Value in Drignal Unit	Accuracy
1.116700E+02 K	17	111.67.K	
1.116000E+02 K	14	111.6 K	-
111.410 K	16	-161.74 C	-
90.690 K	17	90.69 K	
90.630 K.	16	-182.52 C	
90.660 K	16	-182.49 C	
90.680 K	16	-162.49 C	
90.700 K	14	90.7 K	
190.530 K	17	190 53 K	
200 4000	14	1914 F	
	Edst	Edd	Eds

Fig. 3. Pure component experimental data input program of the KDB.

gas/liquid thermal conductivity calculation, gas/liquid heat capacity calculation

- Vapor-liquid equilibrium calculation
- (b) Polymers
 - Density estimation, glass transition temperature estimation, heat capacity estimation, heat of fusion estimation, cohesive energy estimation, refractive index estimation, solubility parameter estimation
 - Polymer solubility calculation
- (c) Aqueous electrolyte solutions
 - Freezing point lowering calculation, solubility calculation, solution density calculation, solution viscosity calculation, solution vapor pressure calculation,
 - Vapor-liquid equilibrium calculation

Essentially, all the property calculation modules for polymer properties are based on group-contribution methods. Models used for equilibrium calculations are as follows.

- (a) Hydrocarbon VLE
 - Equations of state: SRK EOS (with Wong–Sandler mixing rule) [5], PR EOS (with Wong–Sandler mixing rule) [5], nonrandom lattice fluid model [6, 7]
 - Activity models: WILSON model [8], UNIQUAC model [9], UNIFAC model [10]
- (b) Polymer solutions
 - High–Danner model [11], UNIFAC-free volume model [12], nonrandom lattice fluid model [6, 7]
- (c) Aqueous electrolyte solutions
 - Pitzer model [12], Chen model [13], Bromley model [14], Meissner model [15], UNIQUAC model [8]

4. EXPERIMENTAL CAPABILITIES

In addition to the effort to collect data in the literature, the four universities in Korea collaborated to enhance their experimental capabilities in their specialized fields. Data production projects were performed in accordance with local industry's demand for specific data.

5. WEB SERVICE

Compiled physical property data and coefficients for calculation modules can be accessed using an Internet web site (http://thermo.korea.ac.kr). WEB service includes the following interface to the databank.

- Unit conversion
- Atomic weights
- Pure component fixed properties
- Temperature-dependent pure properties
- Binary VLE databank
- Polymer solubility databank
- Aqueous electrolyte solution databank

A typical database search result is shown in Fig. 4.

6. FUTURE PROSPECTS

After 3 years of developing the basic structure and collecting literature data, still more effort remains to meet the needs of academia and industry.

Decement Tate - Massish	Medial E-plane						160
THE BAD WAD	F BRBRAN ERRO	S FROM					
The Chick Told	0 0 0	1 1	13 14	20 73-	100-	9 17 . 9	
HR	and upper 1	11/12	8.76	2 44123 Bb	27	CH ES Pedro	the second second
Para Haranta	HEAL MARCHINE	nhi alphAl	8-09				1 201
	9 1						
	and to	1 .					
KDR	794	5.10					
RUD		7 9.					
Emory Toper-Charin Car	clibrium Automat	• •	-				
		the local sector		OTHER DESIGNATION	A DECIMENT	and a second	and the second sec
				C. L. Dava - and Lineard -	The second as	· · · · · · · · · · · · · · · · · · ·	1.
	Fadore	nce: Peak	MALENCE B	Hillage and William	6. IEC. 43. 14	080.0360	
			1				10000
				gennemal Method -			- 10 C C C C
	Ser.	NO ELMO	IN Ridow	A NAME AND ADDR	ALC: NO.	N NO. OF A	10 March 10
	1.	285	100	0.0245 1.941	0.004	0.004	247 L.V.L.P.
	2	28	200	0.3495 0.966	0.004	0.004	
	3	280	300	0.0120 0.015	0.004	0.804	
	4	288	100	0.0914 0.000	0.004	0.804	
	5	28	500	0.120 0.960	0.004	0.004	ALC: 1 C. L.
		288	400	0142 0304	0.084	0.004	
	7	296	800	0.181 0.996	0.004	0.004	
		200	1880	0.228 0.867	0.004	0.004	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		-	1200	OTM OWF	0.004	0.004	0.00000000
		-	1800	0.228 0.807	0.004	0.004	
		-	1 1000	6-162 (J 660)	0.004	0.894	And the second second
		-	1000	0.000 0.000	0.004	0.004	
	14		-000	1. Mar. 0. 200	0.004	10 MPT	
2184		-		A DESCRIPTION OF THE OWNER OF THE	12752	ALCONT A	0000

Fig. 4. Internet search result for binary VLE data.

Furthermore, it is estimated that 40–60% of the budget of long-term software is spent on maintenance. With the aid of the KICChE (Korea Information Center for Chemical Engineering), the databank is still growing and its contents are being refined.

7. CONCLUSIONS

The current status of the database project in Korea has been briefly summarized. The project is intended to gather data on specialized fields and construct a database, to enhance experimental capability and produce data, and to develop computational modules for thermophysical properties and equilibria.

ACKNOWLEDGMENT

The authors are grateful to the MOCIE and KICChE for the financial support.

REFERENCES

- J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection (DECHEMA, Frankfurt, 1978).
- 2. T. E. Daubert and R. P. Danner, *Data Compilation*, *Tables of Properties of Pure Compounds* (DIPPR, New York, 1985).
- 3. A. H. Larsen, Fluid Phase Equil. 29:47 (1986).
- 4. E. W. Squrires and J. C. Orchard, Oil Gas J. 66:36 (1968).
- 5. D. S. H. Wong and S. I. Sandler, AIChE J. 38:671 (1992).
- 6. S. S. You, K.-P. Yoo, and C. S. Lee, Fluid Phase Equil. 93:193 (1994).
- 7. S. S. You, K.-P. Yoo, and C. S. Lee, Fluid Phase Equil. 93:215 (1994).
- 8. G. M. Wilson, J. Am. Chem. Soc. 86:127 (1964).
- 9. D. S. Abrams and J. M. Prausnitz, AIChE J. 21:116 (1975).
- 10. A. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J. 21:1086 (1975).
- 11. M. S. High and R. P. Danner, AIChE J. 36:1625 (1990).
- J. Holten-Anderson, P. Rasmussen, and A. Fredenslund, *Ind. Eng. Chem. Res.* 26:1382 (1987).
- 13. K. S. Pitzer, J. Phys. Chem. 77:268 (1973).
- 14. C.-C. Chen, H. I. Britt, J. F. Boston, and L. B. Evans, AIChE J. 25:820 (1979).
- 15. L. A. Bromley, AIChE J. 19:313 (1973).
- 16. H. P. Meissner and C. L. Kusik, AIChE J. 18:294 (1972).